山岳地形上流れの LES (その2)

- 各種 SGS モデルの比較 -

飯塚 悟・近藤裕昭(産業技術総合研究所)

1. 序

前報⁻¹に引き続き、山岳地形上流れを LES により解析する。 前報では static な標準 Smagorinsky モデル(Sモデル)を用い た LES 解析を行い、平均風速分布に関しては風洞実験結果²¹ と良い一致が得られるものの、乱流エネルギーの評価等にお いて実験との差異がやや大きくなる結果を示した。本報では この改善等を目的として、dynamic Smagorinsky モデル(DS モデル)^{31,41}及びハイブリッド型 SGS モデル(ハイブリッド モデル)を導入した LES 解析を行い、実験結果²¹及び標準 Smagorinsky モデルの結果と比較し、予測精度の検証を行う。 2. 計算概要

2.1 計算対象 孟らの風洞実験²⁾と同じ余弦の2 乗の断面形 状を持つ2次元山岳地形モデル上の中立大気乱流場。地表面 全体が高さ5m程度の樹木に覆われている"rough"な地表面 被覆状況を想定^{1),2)}。風洞基準風速U_{ref}(=5.9m/s)と山の高 さH(=40mm)に基づくReynolds数は1.57×10⁴。

2.2 計算ケース 表 1 に示す。SGS モデルを変化させた計 3 ケース。ハイブリッドモデルについては 3.2 で後述。

2.3 計算条件 主な計算条件は前報¹⁾参照。但し、前報から 計算領域を 60H(x₁)×4H(x₂)×22.5H(x₃)に、計算格子数を 143(x₁) ×20(x₂)×32(x₃)=91,520 に変更している。

3. 計算結果

以下に示す LES の結果は全て、3 次元計算に基づく瞬時結 果を無次元時間 180 (U_{ref}で主流(x₁)方向の計算領域3周分) で時間平均し、さらにスパン(x₂)方向の平均を施したもので ある。尚、以下に示す諸量はU_{ref}及びHで無次元化し、零面 変位(風洞実験粗度要素高さの0.6倍(=0.075H)で変位²⁾) させた高さを用いて表記する。

3.1 S モデルと DS モデルの比較 (case 1, 2)

(1) 平均風速ベクトルと流線 図1にSモデルとDSモデルの 平均風速ベクトルを流線と重ねて示す。両モデルの結果とも に山頂部(x₁=0, x₃=1)付近で流れが剥離し、山後方に循 環流域を形成している。しかしその大きさは大きく異なり、S モデルに比べて DS モデルの循環流域は遥かに小さい。後述 するように、この差異は主に流れが山に流入するまでの地表 面ごく近傍の乱流性状の評価の違いに起因している。

(2) < ū₁ > の鉛直分布 図 2 は主流方向平均風速 < ū₁ > の鉛 直分布について、実験²、S モデル及び DS モデルの結果を比 較したものである。S モデルの結果は実験と良く一致した結 果となっている。一方、DS モデルの結果は前述したように山 後方の循環流域を過小評価するため、速度回復が早くなり、 山後方領域で実験との差異が大きくなる。

(3) 山に流入する流れの地表面近傍の性状 SモデルとDSモデルの予測精度の差異は流れが剥離する前、風上側山麓の地表面ごく近傍において既に生じており(図2の $x_1 = -1.25$ 及び $x_1 = -2.5$ のライン参照)、これが剥離性状や後流の予測精度に大きな影響を及ぼしていると考えられる。そこで以下では、 $x_1 = -3.75$ における地表面近傍の流れ、即ち、流れが山

表1 計算ケース

	使用した SGS モデル
case 1	標準 Smagorinsky モデル (S モデル)
case 2	dynamic Smagorinsky モデル (DS モデル)
case 3	ハイブリッド型 SGS モデル(ハイブリッドモデル)

に流入する以前の地表面近傍の流れに着目し、S モデルと DS

モデルの乱流性状の評価の違いを検討する。

地表面近傍の風速ベクトル 図3にx₁ = -3.75 における地 表面近傍の平均風速ベクトルを示す。DS モデルの結果はS モデルの結果に比べて地表面ごく近傍まで風速が増加した分 布となっている。このような地表面ごく近傍の風速分布の違 いにより剥離性状が変化し、さらには山後方循環流域の性状 が変化したものと考えられる。 地表面近傍の <C >^{1/2} と < v_{scs} > の鉛直分布 図 4、図 5 に 図 3 と同じ位置($x_1 = -3.75$)におけるモデル係数 <C >^{1/2}(但 し S モデルの結果は Smagorinsky 定数 (=0.1)に Van-Driest 型減衰関数を乗じたもの)と SGS 渦動粘性係数 < v_{scs} > の鉛 直分布を示す。図 4 に示すように、地表面ごく近傍において DS モデルは S モデルに比べて <C >^{1/2}の値が小さい。この差 異は図 5 に示す < v_{scs} > の分布性状に密接に関連する。つま り、地表面ごく近傍において DS モデルは S モデルに比べて < v_{scs} > の値が小さくなり、その結果 total の乱流拡散が減少 し(地表面ごく近傍を考えているので SGS 成分が支配的) 地表面ごく近傍まで平均風速が増加したものと考えられる。 (この仕組みの詳細は紙面の都合上省略。講演時に説明する) 3.2 ハイブリッドモデルの適用(case 3)

DS モデルの予測精度改善のための方策の1つとして、以下 ではハイブリッドモデルの適用を考える。ここで導入するハ イブリッドモデルは、DS モデルにおいてモデル係数 C を過 小評価する地表面第1~第3セルまでの領域(図4参照)にS モデル、その他の領域に DS モデルを適用するものである。 (1) $<\overline{u}_1 >$ の鉛直分布 図 6 に主流方向平均風速 $<\overline{u}_1 >$ の鉛 直分布を示す。ハイブリッドモデルの結果は S モデルの結果 と同様、実験²⁾と極めて良く一致した結果となっている。 (2) 乱流エネルギーの鉛直分布 図 7 は乱流エネルギーk の 鉛直分布について、実験、S モデル及びハイブリッドモデル の結果を比較したものである。但し、S モデルとハイブリッ ドモデルの LES の結果は k の GS 成分のみを表示している。 S モデルの結果は山後方の剥離されてきた流れと循環流域の 間(自由せん断層域)付近をピークとして k を過大評価し、 実験との差異が大きい。一方、ハイブリッドモデルは、剥離 直後では依然として k の過大評価が見られるものの (x₁=1.25のライン参照) x₁≥2.5の領域ではSモデルに比 べて k の過大評価が格段に抑えられ、実験との対応が大幅に 改善されている。ハイブリッドモデルで自由せん断層域及び その付近に適用されている SGS モデルは DS モデルであり、 DS モデルの効果により k の過大評価が改善されている。以上 のように、ハイブリッドモデルでは地表面ごく近傍の領域に S モデルを適用することにより、山に流入する流れの地表面 近傍の乱流性状が正しく評価され、剥離性状や山後方循環流 を正しく予測する。さらに、山後方領域においては DS モデ ルの効果により、自由せん断層域を中心として乱流性状の予 測精度が向上する。

4. まとめ

平均風速分布に関して、DS モデルの結果は実験やS モデル の結果に比べて山後方循環流域を大幅に過小評価する。 こ の DS モデルの予測精度の悪化は流れが山に流入するまでの 地表面ごく近傍の乱流性状の評価、特に地表面ごく近傍のモ デル係数 C の過小評価に起因する。 この改善のために、地 表面ごく近傍を S モデル、その他の領域を DS モデルとする ハイブリッドモデルを導入した。ハイブリッドモデルの結果 は平均風速分布のみならず、乱流エネルギーに関しても実験 結果と良く一致する。

記号 x_i :空間座標の3成分, u_i :風速の3成分 (i=1:主流方向,i=2:スパン方向,i=3:鉛直方向) \overline{f} :変数fにgrid filterを施した値, <f>:変数fの時間平均値,

C:モデル係数、v_{sGs}:SGS 渦動粘性係数、k:乱流エネルギー、

U_{ref}:基準風速,H:基準高さ

謝辞 LES の比較対象とした風洞実験データは東京大学・石原孟 助教授にご提供して頂いた。記して謝意を表する。

参考文献 [1] 飯塚ら,第3回非静力学モデルに関するワークショップ(2001) pp.32-33 [2] 孟ら,第15回風工学シンポ(1998) pp.61-66 [3] Germanoら, Phys. Fluids A3(7) (1991) pp.1760-1765 [4] Lilly, Phys. Fluids A4(3) (1992) pp.633-635