フロリダ半島における対流性の雲の再現実験

* 高橋 義仁, 岩崎 俊樹 (東北大学 院 理)

1 はじめに

アメリカ・フロリダ半島では、主に夏の日中、上空に 対流性の雲が発生する。V.G.Plank(1969)は、この雲 群の航空写真観測を行い、個々の積雲のサイズやその 分布密度、それらの時間変化について統計的解析を行っ ている。これらの雲は水平スケール・鉛直スケールがと もに 1.5~2.0km 程度の大きさであり、雲頂高度や雲間 距離をそれぞれ、対流細胞の鉛直・水平スケールとみな せば、これらの積雲群は、ベナール型対流細胞の分布に よく対応しているとした。つまり、この対流性雲の発生 要因は、日射により加熱されたフロリダ半島の地表面 により、その上空の大気がベナールセル型対流を起こ していることによるものであると考えられる。日中に 対流性の雲が顕著に発生した期間 (2001.8.9.00UTC~ 2001.8.14.00UTC) では、フロリダ半島は北大西洋の高 気圧の張り出しの中に位置している。上空の風向は主に 北東~南東であった。雲画像を見ると大きく目立った雲 はなく、晴天が続いている。ここでは対流性の雲が顕著 に現れていて (図1)、これは期間中続いているもので ある。この期間について、気象研究所・気象庁数値予報 課統一非静力学メソモデル MRI/NPD-NHM(Saito et al..2001)を用いて、この対流性の雲の再現実験を行っ た。フロリダ半島は非常に平坦な地形であり、海陸風 も顕著に発生する。このようなシンプルな環境で数値 実験を行うことで、対流性の雲、海陸風、そしてそれら の相互作用などを容易に再現できるものと考えられる。

2 数値実験の概要

気象庁全球客観解析データ GANAL に、水平分解能 がそれぞれ 40km、10km、2km、0.5km の MRI/NPD-NHM を順次ネスティングし、水平、鉛直分解能を高め ながら再現実験を行う。方程式系は3次元、非静力、完 全圧縮系で、降水過程には氷晶までを含む過程を用いて い、鉛直座標は地形に沿った座標系である。また、気象 庁全球モデルの短波放射スキームを組み込み(Nagasawa et al., 2001)、NHM の放射スキームの改訂を行ってい る。分解能が 40km の数値実験(NHM40)では、2001 年7月 20日 00UTC~8月 20日 00UTC の744 時間に わたって長期積分を行い、NHM の再現性を確かめた。 以下の分解能では、対流性の雲が顕著に発生した8月 9日~13日について再現実験を行う。表1に、各数値 実験で解像度、時間間隔を、図2に計算領域を示して いる。

3 結果と課題

3.1 NHM2 で再現された対流性雲の特徴

図3は、NHM2により再現された雲水を鉛直積算したものである(8.11.14UTC~8.11.18UTC)。まず、日射で暖められた地表面により半島状の空気が加熱されることで、一様に広がっていた雲水が蒸発する。また、半

表1数値実験の設定

	grid	Δ x, Δ z	Δ t
NHM40	55*55*38	40km,40-1120m	20sec
NHM10	102*102*38	10 km, 40 - 1120 m	10sec
NHM2	102*102*38	2km,40-1120m	5sec
NHM05	140*140*76	0.5km, $20-560$ m	2sec

島状ではベナールセル型対流が発達し、その上昇流域 では雲が生じる。ここで東海岸からの海風の進入が起 こり、海風の先端では上昇流が強められ、さらに大きな 積雲へと成長する。ここでは総観場の風が東よりの風 であることにより、この積雲が西に向かって流されて いる様子もわかる。一方で巨大積雲の西側では、対流 が発達しているので、雲頂高度が約1.5km~2.5km、雲 間隔が約5~10km 程度の積雲が、半島上に起こってい る対流の上昇域に沿って、一様に数多く分布している。

3.2 NHM05 で再現された対流性雲の特徴

水平解像度、鉛直解像度を細かくして、この対流性 雲と海風の相互作用の再現実験を行った。図4はこの 結果である。鉛直積算雲水量(風速のベクトルは高度 100mのもの)、雲水の鉛直断面図、東西方向の風速の 分布、相対湿度の分布を示している。東西方向の風速の 分布を見ると海風前線とわかる風速のシェアが再現さ れている。東からは相対的に冷たく湿度の高い海風が 流入している。また海風前線にあたるところでは、対 流の上昇流が強められて、雲頂高度の高い積雲が再現 されていることも NHM2の結果と矛盾しない。

4 問題点と課題

NHMにより再現されたフロリダ半島上空の対流性の 雲は、雲頂高度はV.G.Plankによる解析の結果とよく 対応している。またこの実験では顕著な海風も再現さ れており、この海風循環により対流性の雲の位置、分布 が日変化をし、海風との相互作用によりさらに発達す ることも再現された。一方で雲間隔はV.G.Plankの観 測のものと比べると大きい。解像度が細かくなること でより微細な構造を再現できているが、雲水量が解像 度ごとに大きくなる。解像度を変化させてもモデルで 再現される結果が違ったものになってはならない。今 後は解像度をさらに細かくした実験や、各種物理過程 のパラメータを変化させるなどの感度実験を行うこと で、この対流性雲の成因やさらに細かい構造、発達維 持の機構を検証していく。

参考文献

Kazuo Saito, et al., 2000, Numerical Simulation of the Diurnal Evolution of Tropical Island Convection over the Maritime Continent Monthly Weather Review, 129, 378–400.

図 1 2002.8.11.16UTC(現地時間では同日 11 時)のフロリ ダ半島の衛星雲画像(可視)。フロリダ半島上空に対流 性の積雲が数多く分布している。

図 2 モデルの計算領域。外側の黒い四角から順に、解像度を 40km、10km、2km、0.5km としたときのモデルの領域 である。グリッド数などは表 1 を参照。

図 3 NHM2 により得られた、地表から 5km までの雲水の鉛 直積算量。

図 4 NHM05 で再現された対流性の雲の微細構造。矢印は風 のベクトルをあらわしている。また図中の直線 AB は断 面図の位置を表している。