気象庁非静力学モデルによってシミュレートされた 融解層における凝結強化

*橋本明弘¹・村上正隆²・室井ちあし²・金田幸恵¹・若月泰孝¹・安永数明¹・加藤輝之²・栗原和夫²・吉崎正憲² ¹ 地球科学技術総合推進機構² 気象研究所

1. はじめに

人・自然・地球共生プロジェクト第4課題「数km メッシュ雲解像大気モデルの開発に関する研究」にお いて、IPCC第4次評価報告書に向けた領域温暖化予 測実験を行なった。この実験の中で、雲粒への凝結が 融解層内で強化される現象がみられた。雪粒子の融解 によって大気が冷やされ、水過飽和状態が生じ凝結が 起きる場合、凝結による加熱と融解による冷却がほぼ 相殺されるが、今回の実験では融解層内で強い正味加 熱が働くほど凝結が強化される領域が存在した。これ が天然の降水システム内で実現し得るかどうかを明ら かにするために、この現象がモデル内でどのような過 程によって成立しているかを調べた結果を報告する。

2. 実験の設定

モデルは、気象庁非静力学モデル (JMA-NHM) を ベースとして開発された雲解像モデルで、その雲物理 過程は、5つの水物質カテゴリ (雲粒・雨滴・氷晶・雪 粒子・霰粒子)全てに、混合比・数濃度の2つを予報変 数とする2モーメントバルクスキームを用いている。 凝結核形成過程には、上昇流速度、温湿度、および雲 粒子の成長率から診断される最大過飽和度を用いて雲 粒生成数を計算する方法をとった。

解像度は水平 5km、鉛直方向には 40m から 960m の ストレッチ格子 (48 層)を用いた。IPCC へ向けた温暖 化予測実験では、東アジア域水平 4000kmx3000km、モ デルトップ約 22km の広領域を設け、述べ 80 日間の長 期積分を 10 年分行なったが、今回は融解層内での凝結 強化を詳しく調べるため、典型的な事例を選び、小領 域 (水平 1500kmx1500km)短期積分 (24 時間)実験を行 なった。初期値・境界値には、広領域長期積分実験と同 じ、全球大気気候モデルによる現在気候と IPCCA1B シナリオに基づく地球温暖化実験の結果を与えた。

3. 実験結果

図1は、現在気候(T=24h)と温暖化気候(T=18h) の各一事例における非断熱過程による水蒸気収支の全 領域平均値である。凍結高度は、現在気候では約5km、 温暖化気候では約6kmにあたる。どちらの場合も凍 結高度直下で強い水蒸気シンクが存在する。非断熱加 熱(図2)をみると、それぞれ同じ高度で非断熱加熱の ピークがみとめられる。

ここで、このような特徴がモデル解像度に依存する かどうかを確認する。分解能に対する感度実験として、 温暖化気候の事例で、CNTRL(図1右)に対して水平 格子数(NX,NY)、鉛直格子数(NZ)、時間分解能(DT) を変えた実験(EXP1-EXP3)を行なった。感度実験の 結果(図3)、分解能に依らず同様の特徴が得られた。

次に、温暖化気候の事例について雲物理構造を調べる。この事例は、朝鮮半島南部から山陰地方にかけて

帯状の降水帯がのびていた (図4左)。下層の相当温位 場(図4右)から、この領域に高相当温位の空気が供 給されているのがみられる。 図4中太線における鉛直 断面内の雲粒混合比分布を図5に示す。下層を吹走し てきた高相当温位空気が、地上の降水帯にあたる場所 で持ち上げられ雲を形成している。凍結高度(約6km) より上空では、雪粒子が豊富に存在している (図 6)。 図7は、雲粒の凝結を除く全ての非断熱過程による加 熱率である。凍結高度より上空の加熱は概ね雪粒子の 昇華成長に起因し、凍結高度直下の冷却は概して雪粒 子の融解に起因する。 図8は、非断熱過程による水蒸 気収支であるが、凍結高度直下の冷却域(図7中央) と同じ領域に強い水蒸気シンクが存在し、雲粒の凝結 が強まっている。また、 図7に雲粒凝結による加熱率 を加えた 図9をみると、この領域では強い加熱を示し ており、雪粒子の融解による冷却を越える凝結加熱が 起きている。

4. 考察とまとめ

上の結果から、融解層内の凝結強化が、雪粒子の融 解による冷却に対する熱的な補償作用として起きるの ではなく、力学的フィードバックを介して生じている と洞察できる。そこで、雪粒子の融解による大気の冷 却が力学的にどのようなインパクトを与えるかを調べ るために、温暖化気候の事例について融解熱のみを除 去した感度実験を行なった。この感度実験の結果、融 解熱を除去した場合には図1(右)のような融解層内の 強い水蒸気シンクは現われず、この特徴が融解熱に起 因することが示された(図略)。

図 10 は融解熱を入れた場合と除去した場合の全計算 領域平均プロファイルの比較である。図 10 左図をみ ると、融解熱を入れた場合には融解層下部(高度 5km 付近)で空気の鉛直フラックスの標準偏差が大きくなっ ており、融解による冷却によって対流が強められてい る。さらに、渦拡散係数(図 10 右図)をみると、融解 熱を入れた場合に融解層下部で渦拡散が強まっている ことがわかる。対流の強化と渦拡散の強化は、融解に よる冷却によって融解層下部が不安定化するのに対応 している。

今回とりあげた事例で凝結が強化されている領域は、 対流コア近傍で水蒸気が潤沢に供給される領域に対応 する。外的に水蒸気の供給が維持されるのと同時に、 融解熱に起因する局所的な対流によって、水過飽和状 態が形成・維持されることで融解層内で雲粒凝結が強 化されていた。

ー連の過程に渦拡散が介在しているため、融解層に おける凝結強化が渦拡散過程の定式化に依存して生じ ている可能性がある。この点を、現象の現実性ととも に調べる必要がある。

図 2 現在気候 (左) と温暖化気候 (右) の各一事例における, 非断熱加熱率.

図 3 感度実験結果.非断熱過程による水蒸気収支(左)と加 熱率(右).実線:CNTRL(NX,NY=300,NZ=48,DT=12s), 破線:EXP1 (NX,NY=300,NZ=96,DT=12s), 点線: EXP2 (NX,NY=300,NZ=96,DT=8s), 一点鎖線:EXP3 (NX,NY=750,NZ=48,DT=8s).

図 4 温暖化気候の事例における地上降水量 (左) と相当温位 (右).実線は海面気圧.

図5図4の太線における鉛直断面内の雲粒混合比の分布.

図6図5と同様.ただし、雪粒子混合比の分布.

図 7 図 5 と同様.ただし,雲粒の凝結を除く全ての非断熱 過程による加熱率.

図8図5と同様.ただし、非断熱過程による水蒸気収支.

図9図5と同様.ただし、全ての非断熱過程による加熱率.

図 10 融解熱を入れた場合 (実線) と除去した場合 (破線) の 高度分布.空気の鉛直フラックス (左;太線は平均,細線は標 準偏差), 渦拡散係数 (右).