1ヶ月アンサンブル予報のダウンスケール ~2003年ヤマセ事例~

東北大学大学院 理学研究科 福井 真

目次

I. はじめに

Ⅱ. 実験概要

Ⅲ. DSシステムの効果

IV. アンサンブル予報

V. まとめ・課題

I. はじめに

(力学的)ダウンスケール

- 局地循環、地形の効果など 低解像度モデルでは表現で きない事象を陽に扱うことが できる
- 高解像度で、物理的整合性の取れたデータを作成できる
- ・DSモデルを用いることに伴う 誤差が付加される。

アンサンブル予報

・微小摂動を加えた複数の初期値(境界値)を用いて、 確率密度関数を予報する

- 大気のカオス性(初期の微小誤差が時間とともに拡大) 予報の延長・高解像度化→決定論的予測が困難
- アンサンブル平均では、誤差が打ち消し合い、 より正確な予報が期待できる
- ・予報の信頼度を評価できる

単独予報

目的

アンサンブルダウンスケールシステムを構築し、 高解像度での確率予報を行う。

Ⅱ. 実験概要

計算設定

使用モデル	気象庁非静力学モデル(JMA-NHM)(Saito et al. 2007)		
水平解像度	25km (100×70)	5.0km (80×80)	1.0km (125×125)
初期值·境界值	1ヶ月アンサンブルハインド キャストデータ (1.25度)*	25km_NHMの結果	5.0km_NHMの結果
メンバー数	9		
計算時間	2003年7月20日21JST ~8月5日21JST(15days)	2003年7月21日00JST ~8月5日21JST	2003年7月21日03JST ~8月5日21JST
時間間隔	40s	20s	5s
鉛直格子	42層(20-840m) ハイブリッド座標		
積雲対流 パラメタリゼーション	Kain-Fritschスキーム		なし
SST			
乱流クロージャー モデル	Improved Mellor-Yamada Level3 (Nakanishi and Niino 2004,2006)		

*気象庁気候情報課より提供

計算期間

Ⅲ. アンサンブル予報

初期値・境界値の検証

 $x_{i,j}$: Value of j - th Member at i - th Grid Point

 x_i^o : Observation at *i* - th Grid Point

 $\overline{x_i} \left(= \frac{1}{N} \sum_{j=1}^{N} x_{i,j} \right)$: Ensemble Mean at *i* - th Grid Point

初期値・境界値の誤差

図3.1 ーヶ月アンサンブル予報の日本付近(130E-160E,30N-60N)にお ける海面更正気圧のJRA-25に対するRMSE & Spread [hPa]

初期値・境界値の検証

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

図3.3 各アンサンブルメンバーの下層雲量(陰影)と地上風(矢印)の日平均 ただし、dx=1kmにダウンスケールしたもの

図3.4 計算領域内のAMeDAS(19点)の(左)平均気温(右)気温日較差

予報誤差の要素

 $x_{i,j}: \text{Value of } j \text{ - th Member at } i \text{ - th Station}$ $x_i^o: \text{Observation at } i \text{ - th Station}$ $\overline{x_i} \left(= \frac{1}{N} \sum_{j}^{N} x_{i,j} \right): \text{Ensemble Mean at } i \text{ - th Station}$ RMSE of Ensemble Mean at i - th Station $ME_i = \sqrt{(\overline{x_i} - x_i^o)^2}$ Spread at i - th Station $S_i = \sqrt{\frac{1}{M} \sum_{j}^{M} (x_{i,j} - \overline{x_i})^2}$

Ensemble Mean of Squared Error at *i* - th Station

$$\overline{E_i^2} = \frac{1}{M} \sum_{j}^{M} \left(x_{i,j} - x_i^o \right)^2$$

$$= ME_i^2 + S_i^2^2$$

$$\stackrel{\circ}{\longrightarrow} \sum_{i=1}^{M} \left(x_{i,j} - x_i^o \right)^2$$

· 各観測点におけるアンサンブル平均誤差と スプレッドの領域平均

スプレッドとアンサンブル平均の誤差 分布(1日日)

スプレッドとアンサンブル平均の誤差 分布(2日目)

スプレッドとアンサンブル平均の誤差 分布(3日目)

スプレッドとアンサンブル平均の誤差 分布(4日目)

スプレッドとアンサンブル平均の誤差 分布(6日目)

スプレッドとアンサンブル平均の誤差 分布(8日目)

まとめ

・メンバーにより、下層雲の表現に大きな差 →気温の日較差にばらつき(max:12℃)

・地点、予報時間を問わず、
 (スプレッド)<(アンサンブル平均誤差)であった。
 ⇒モデルのバイアスが大きい

・地点によるスプレッドの違いがあまり見られない

今後の課題

・地点による違いをさらに詳しく調べる

アンサンブル平均の誤差の改善 →ダウンスケールによるバイアスの修正

複数の事例についてアンサンブル予報を行い、統計的にアンサンブルダウンスケール予報が有意か調べる。

Ⅲ. ダウンスケールの効果

ダウンスケールの効果

境界値の誤差を取り去る

初期值·境界值	1ヶ月アンサンブル(1.25度)→JRA-25(1.25度)
SST	固定→更新 (24時間毎)

気温

日最低気温

· AMeDASとの比較(日最低気温)

$$E_{i} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (x_{i,t} - x_{i,t}^{o})^{2}}$$

 E_i : Error at Station *i*

 $x_{i,t}$: Model Output at Station *i* at Time *t*

 $x_{i,t}^{o}$: Observation at Station *i* at Time *t*

気温の日較差 · AMeDASとの比較(日較差)

$$E_{i} = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (x_{i,t} - x_{i,t}^{o})^{2}}$$

 E_i : Error at Station i

 $x_{i,t}$: Model Output at Station *i* at Time *t*

 $x_{i,t}^{o}$: Observation at Station *i* at Time *t*

計算期間(2003年7月21~8月5日)における下層雲量(陰影)と地上風(矢印)の平均 (左)水平解像度25km (中央)水平解像度5.0km (右)水平解像度1.0km

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

図 7月23日における下層雲量(陰影)と地上風(矢印)の平均 (左)水平解像度25km (中央)水平解像度5.0km (右)水平解像度1.0km

ダウンスケールの効果 ~まとめ~

- · 25km→5km
 - 下層雲の表現が良化
 - ⇒ 気温の日変化の誤差が減少
- · 5km→1km
 - 気温、下層雲の分布・量に大きな違いなし
 ※ 地形のより複雑な地域(ex.岩手)について調べる必要

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20JUL

予報結果 ~検証

· AMeDASとの比較(dx=1.0km)

