

雲解像モデルCReSSを用いた ヤマセ時の低層雲の構造解析

*吉岡真由美¹•片桐秀一郎¹•早坂忠裕¹ •坪木和久²•榊原篤志³

1.東北大学大気海洋変動観測研究センター

2.名古屋大学地球水循環研究センター

3.(株)中電シーティーアイ

第9回ヤマセ研究会,2014年3月10日(月)-11日(火),東北農業研究センター,盛岡,岩手

1

はじめに

- ・ 雲解像モデルは、背が低い低層雲や、静かな層状 性の雲とその事例の再現への利用は少ない。
- 本研究では、これまで雲解像モデルを用いた検証 事例が少ない低層雲を対象とした再現実験を行い、 雲物理量を衛星観測で得られる診断量(MODISデー タセット)と比較し、分布、構造を検証する。
- 「雲解像モデルCReSSを用いた夏季北西太平洋域の 低層雲の再現実験」(2013年3月のヤマセ研究会)で、 事例として2011年7月末に観測されたヤマセ時の雲 の再現実験の結果(解像度1km,400m)を報告。
- 本報告では、再現された低層雲の構造、特に鉛直 分布に注目して行った結果を示す。

日本域天気概況

- オホーツク高気圧がゆっく り東進(28日から31日)
- 梅雨前線に伴う低気圧が \bullet 35N付近を通
- →三陸沖南東風の持続

30日(土) 新潟・福島豪雨は収束へ 新潟県南魚沼市塩沢で4時28分までの 1時間に89.5mmの雨等、新潟県や福 島県では今日も観測史上1位の雨の記 録を更新。雨は午後には峠を越えて 収束へ。

31日(日)雨の主体は西進 北海道と東北〜関東の太平洋岸は北 東風でひんやりした霧雨。太平洋高 気圧の中心に近い沖縄~九州で晴れ て気温上昇。福島県沖でマグニ チュード6.4の余震発生。

地上天気図(気象庁提供)

雲解像モデルと実験の設定

雲解像モデル	CReSS ver.3.4.1 with MSTRANX (並列版)
水平解像度	400m(1000m 実験は略)
水平格子数	X:1795 × Y:1539
鉛直解像度	下層2000mまで50m、それ以上は漸増で平均 約80m
鉛直格子数	103
積分時間	118800秒 (33時間)
投影図法	ランベルト図法(20N,40Nを基準緯度)
雲物理過程	冷たい雨のバルク法
放射過程	MSTRNX (10分毎)
乱流過程	乱流運動エネルギーを考慮した1.5次のクロー ジャ
地表面·海洋過程	1次元熱伝導、1次元拡散モデル
初期值·境界值	気象庁MSM5km解像度予報值
地形·土地利用	実地形を用いる。土地利用は考慮せず
初期時刻	2011年7月29日 15UTC

MODIS可視反射輝度

<u>33時間目の結果:地上気圧、地上風、高度25mの気温、高度525mの雲水混合比</u> 00:00Z 31JUL2011 Qc, SLP, Ts, us;vs Z=525 m 44N 1.2 43N · 1.1 1 42N -0.9 0.8 41N-0.7 0.6 40N 0.5 0.4 に対流 .009.5 009 0.3 39N 0.2 0.1 38N 17 Contouring: 1006.5 to 1015 interval 0.5 (hPa) 146E 147E 148E 149E (g/kg)

結果:水平分布の再現性

- 2011年7月末に観測されたヤマセ時の雲の再現実 験では、
 - 解像度1km,400mの計算を実施し、高解像度化で表現が 改善され、400mでほぼ低層に広がる雲が再現されている ことを確認
 - 下層雲が水雲(雲水+雨)で構成されていたことを確認
 鉛直積算量(LWP)はMODISデータセットと比較してほぼ同 程度

が示された。

鉛直方向の構造の分布はどうなっているか?

- 雲の高さ(雲頂輝度温度)を衛星観測と比較

Cloud Top Brightness Temperature [K]

まとめ

- ・ 雲解像モデルCReSSを用いて高解像度(400m)で再現した、2011年7月末の北西太平洋ヤマセの低層雲について、構造を衛星データセット(MODIS)と比較した。
- 水平分布に関してはほぼ再現
 - 気流場に沿った全体的な水雲のパターン(風の場)
 - 雲水量(LCW)の分布の一致(400m解像度)
- ・ 鉛直分布について、
 - シミュレーション結果の雲水量を用いた雲頂判定の閾値は 適切。中立成層のほぼ上端に雲頂が分布。
 - 衛星との雲頂輝度温度の頻度分布を比較では、計算領域 およびヤマセの低層雲領域全体的に高温(10K近く)のずれ。
 ⇒ヤマセの雲が低めに再現、もしくは雲頂での冷却が弱い