2017.2/16 ヤマセ研究会

2013年5月13日の仙台山形の 気温差について(続報)

東北大院·理 岩場 遊*、岩崎 俊樹、福井 真

地上気温予測

- ◆地上気温予測の重要性
 - 生活情報、農業、エネルギー

♦ 最高気温予報

- 数値予報(GSM, MSM)+ガイダンス
- 春から夏の東北地方は予報精度が低い ↑ 太平洋側からの冷気の侵入具合で大きく変わるため

「最高気温」の予報精度(予報誤差)の例年値

単位・「℃]

表1 最高気温予報誤差の	地方予報区	年平均	春 (4月)	夏 (7月)	秋 (10月)	冬 (1月)
十十间(风豕 月 HP)	北海道	1.7	2.1	2.0	1.5	1.4
	東北	1.9	2.2	2.1	1.7	1.5
	関東甲信	2.0	2.2	2.0	1.9	1.7
	東海	1.8	2.0	2.0	1.7	1.6
	北陸	1.8	2.0	1.9	1.6	1.5
	近畿	1.7	1.8	1.7	1.7	1.4
	中国	1.7	2.0	1.8	1.6	1.5
	四国	1.7	1.9	1.7	1.5	1.4
	九州北部	1.6	1.8	1.7	1.5	1.4
	九州南部	1.6	1.8	1.7	1.5	1.5
ilobal Spectral Model	沖縄	1.2	1.3	0.9	1.1	1.3
Meso-Scale Model	全国平均	1.7	1.9	1.8	1.6	1.5

GSM: G MSM: N

- ◆ ヤマセ
 - ・ 亜寒帯水域で涵養された冷気が海上を南下して東北地方に やってくる現象 (木村, 1995)
 - 太平洋上での気団変質で特徴が決まる
- ◆ Kodama (1997): 1993年のヤマセに対して流跡線解析
 - 北東風と南東風で東北地方に到達する場合がある
 - 両者で気団変質に違い
 北東風:海面から加熱されて到達
 南東風:海面から冷却されて到達

対象事例 2013年5月13日

- ・ 仙台の最高気温予報が大きく外れた

 (MSMでは約9 ℃高く予報)
- 極端現象
 (仙台と山形で過去最大の最高気温差)
- 本事例に対する研究報告は無い

表2 5月13日の最高気温

5月13日の 最高気温[℃]	山形	仙台
平年	21.3	19.0
2013年	29.1	11.4
偏差	+7.8	-7.6

目的: 仙台山形間の気温差のメカニズムの解明

※時刻は全て日本時間(JST)

地上観測

8 6

表3 2013年5月13日15時の観測値 2013年5月13日 山形 仙台 15時の観測値

天気	晴れ	曇り
気温[℃]	28.7	10.1
風向	西南西	東
相対湿度[%]	24	94
雲量	5	10
 	25	3

図2 5月13日15時の気温(アメダス)

- 宮城県全域や岩手県沿岸で低温 •
- 山形、米沢、会津盆地で高温 ullet
- 湿度や視程にも奥羽山脈を挟んだコントラスト •

Temperature 2013.05.13.15JST

総観場(JRA-55 Surface)

<u>ダウンスケーリング計算設定</u>

ヤマセは細かい地形の影響を受けるため高解像度モデルが必要 ⇒ 力学的ダウンスケーリング

7/16

表4 計算設定

数値モデル	気象庁非静力学モデル (JM	A-NHM)	Shade:Domain and Topography	
初期時刻	2013.05.11.21JST			
タイムステップ	10秒		2200 2000	
空間解像度	水平2 km (300x300)、鉛直3	8層		
モデルトップ	14.5 km			
初期值境界值	気象庁現業メソ解析 (5km、	3時間毎)	*°	
海面水温	MGDSST (daily、 0.25°)			
乱流過程	改良 Mellor-Yamada Level3 (Nakanishi and Niino, 2009)	スキーム	✓ ○ ① 図5 計算領域と地形	
放射過程の雲量	部分凝結スキーム	検討に用い		
積雲対流	なし	一般証に用し	ハる 「一) 、と気象台による地上観測	
		• JRA-55		

ダウンスケーリング 結果

- ・ 仙台の最高気温は観測より約5℃高い(MSMから4℃改善)
- 13日日中、仙台は東寄り、山形は西寄りの風
- ・太平洋側の冷気層は奥羽山脈より低い
 ⇒ 仙台山形間の気温差

後方流跡線解析

<u>仙台の低温の要因を明らかにする</u>

ヤマセの気団変質の理解には 流跡線解析が有効

手法:4次のルンゲ・クッタ法 計算開始時刻:5月13日15時 計算時間 仙台:30時間 山形:5時間30分 10個のパーセルをランダムに 散らし、平均

図8 15分毎の流跡線の位置。赤点は3時間毎。

- ・ 仙台の空気は太平洋から、山形の空気は日本海から

 ・ 奥羽山脈の地形の効果
- 仙台の空気は一旦南下後、北上して到達

仙台に到達した空気と総観場の関係

10/16

仙台に到達した空気の気団変質

12日午前の昇温

NHM-LETKF 計算設定

13/16

計算時間	2013年5月5日12UTC ~ 13日12UTC	(192時間)
タイムステップ	10秒	Shade:Domain and Topography
水平解像度	2km (150x150)	[m] 2400
鉛直層	38層 (40-760m)	2200 2000 1800
モデルトップ	14.5 km	1600 1400
初期値境界値	気象庁現業メソ解析 (地上5km、p面10 km、3時間毎)	1200 1000 800 600 400
メンバー数	10	
同化ウインドウ	3時間	
同化する観測	地上気圧(11地点、1時間毎)	図計算領域と地形
局所化半径	200 km, $-0.4 \ln \left(\frac{p}{p_0}\right)$	
膨張係数	1.2	
側面境界摂動	(他年の同時刻との差)×0.2	
・ 地上気圧同化による風・気温場へのインパクトを調べる		

気圧場・風の場の変化

38.26Nにおける12日9時の温位と風の高度-経度断面

地上気温の変化

仙台と山形における地上の気温、風 黒:LETKF、水色:NHM、青:アメダス 15/16

まとめ

◆ 気温差のメカニズム

- > 奥羽山脈で下層の東風と西風が収束
- > 太平洋側の冷気が奥羽山脈よりも低い
 - ⇒ 両地点の空気の起源の違い
- ◆仙台の空気
 - > 一旦南下後北上して到達・SST負偏差
 ⇒ 下層雲の発達
- ♦ NHM-LETKF
 - ▶ 地上気圧の同化による気温の改善が確認できた

◆課題

- ➤ (NHM)鉛直方向の高解像度化
- ➤ (LETKF)東北大スパコンで計算(メンバー増、計算領域拡大)