2018-02-18 第14回ヤマセ研究会, 19-20Feb2018; (1日目, 13:00-13:20), 発表+質疑=20 min.





1/22

• 低気圧活動



# 1. 日々の地上気温変動の将来変化

□ 気温急低下≒寒気吹き出し,として評価

# 2. 低気圧活動の将来変化 □ 急発達する低気圧(爆弾低気圧)に着目 □ 経路別・月別に評価

素朴なギモン:

### 「温暖化」は「穏やかな天候」をもたらすのか?

これに回答するため, CMIP5 将来予測データを解析

### 東アジアの冬季モンスーンの季節進行とその 将来変化(1):日々の地上気温変動



Key question:

 温暖化後,寒候期の日々の気温変動は穏やかに なる?

現在よりも大きな変動(2, <u>3月</u>の中国東部)
 ユーラシア北東部での残雪の影響か

### 地上気温の平均的な季節進行 20C vs. 21C (RCP8.5), Nov-Apr



4/22

### List of CMIP5 models (regrid 1.25 deg.): Select "high-resolution" seven models

| ID | model name<br>(reference)                           | Institution<br>(country)         | Horizontal<br>grids<br>(atmos.) | vertical<br>levels<br>(atmos.) | Horizontal<br>grids<br>(ocean) |
|----|-----------------------------------------------------|----------------------------------|---------------------------------|--------------------------------|--------------------------------|
| С  | BCC-CSM 1.1 (M)<br>(xxxx)                           | BCC/CMA<br>(China)               | 320 x 160<br>(Txx)              | Lxx,<br>top=xx-hPa             | 360 x 232                      |
| Е  | CCSM4<br>(Gent et al. 2011, JC)                     | NCAR<br>(USA)                    | 288 x 200<br>(Ion-lat grid)     | L26,<br>top=2.2-hPa            | 320 x 384                      |
| F  | CESM1-BGC<br>(xxxx)                                 | NSF, DOE, NCAR<br>(USA)          | 288 x 200<br>(Ion-lat grid)     | L26,<br>top=2.2-hPa            | 320 x 384                      |
| Η  | CMCC-CM<br>(xxxx)                                   | CMCC<br>(Italy)                  | 480 x 240<br>(T159)             | L31,<br>top=10-hPa             | 182 x 149                      |
| Ι  | CNRM-CM5<br>(Voldoire et al. 2013, CD)              | CNRM<br>(France)                 | 256 x 128<br>(TL127)            | L31,<br>top=10-hPa             | 362 x 292                      |
| S  | MIROC5<br>(Watanabe et al. 2010, JC)                | AORI/NIES/JAMS<br>TEC<br>(Japan) | 256 x 128<br>(T85)              | L56, top=0.003-<br>hPa         | 256 x 224<br>L50               |
| V  | MRI-CGCM3<br>(Yukimoto et al. 2011, MRI Tech. Rep.) | MRI<br>(Japan)                   | 320 x 160<br>(TL159)            | L48,<br>top=0.01-hPa           | 364 x 368<br>L51<br>5          |

### Daily cooling intensity (DCI): $10^{\text{th}}$ percentile of daily mean T change; $\Delta T_{2m}$ (10%)

8

(frequency)

 $\square$ 



- Make monthly statistics of DCI
  - (Oct May) in the late 20C & 21C
    - 20C (historical; 1971-2000)
    - 21C (RCP4.5 & 8.5; 2071-2100)
- DCI: <u>10<sup>th</sup> percentile</u> of  $\Delta T_{2m}$ 
  - Use daily mean 2-meter Temp. (T<sub>2m</sub>), day-to-day T<sub>2m</sub> changes sort upward (30-yr; N = approx. 900).

$$\Delta T_{2m} = T_{2m} (\dagger = 0) - T_{2m} (\dagger = -1)$$

Fig. (upper)  $\Delta T_{2m}$  histogram. (left) Horizontal distribution of DCI. dashed: accumulated freq. (right axis) histogram (gray & red): rank freq. (left axis) gray: 20C (1971-2000) red: 21C (2071-2100)



RCP8.5シナリオの方が顕著な DCI 強化

### [ADCI] (E. China), RCP4.5 & RCP8.5: Oct-May (7-model MMEM)



[] = Area-mean in E. China **(25-40N, 100-120E)** 

Iarge ∆CI (highest two) H: CMCC-CM I: CNRM-CM5 small ∆CI (lowest two) S: MIROC5 V: MRI-CGCM3

### Future changes of snow water amount in Eurasia: Mar, 21C-20C, RCP8.5 (13-model MMEM)

CMIP5 MMEM (13-model), Mar diff. of  $\triangle$ SNW (rcp85 21C - 20C; shade)







□ 温暖化すると、日々の気温変動も穏やかに

□ 中緯度域(特に中国東部): 2,3月で気温低下幅が現在気候よりも拡大.
 □ 温暖化しても「急に寒くなった」と感じる日は,同程度以上の頻度で発生

温暖化時,北東シベリアでは冬季積雪が増加.積雪被覆域からの寒冷気 塊の流出(寒気吹き出し)時,中緯度で顕著な気温低下

## まとめ(1):日々の地上気温変動

### □ DCI は **晩冬~初春**の東アジアで特に強まる

- 高解像度モデルの多く(7モデル中6ヶ)が同様の傾向.上記に低 解像度モデルを含めてもほぼ同様(全16モデル中13ヶ).
- DCI 強化が顕著な期間では、ユーラシア東部の積雪面積は現在気候と同程度(積雪量は増加). つまり、ユーラシア東部では下層 寒気形成に適した地表面状態は温暖化時でも維持.

Future plan:

- □ 陸上積雪とDCIとの関連
  - 中東~中央アジアでのDCI強化をどう説明するのか? 現時点の仮説が誤っているのか, それとも東アジアとは別プロセスが作用しているのか?

### 東アジアの冬季モンスーンの季節進行 とその将来変化(2):低気圧活動



# 研究動機:日本付近の爆弾低気圧活動は,将来どのように変わるのか?



1.875 deg. (before Feb1996), 1.25 deg. (after Feb1996)

# 研究目的,使用データ

- 日本付近を通過する爆弾低気圧の再現性を評価,その将来変化傾向を明らかにする
  - 経路タイプ別の活動度(季節性, 頻度, 強度)
  - YA2004 による3分類を低気圧経路データに適用

使用データ:長期再解析&CMIP5

- 再解析: JRA55, ERA Interim, CFSR
- CMIP5: 高解像度 6モデル(水平格子1.25°間隔程度)
  - BCC-CSM 1.1 (M), CCSM4, CMCC-CM, CNRM-CM5, MIROC5, MRI-CGCM3
  - RCP4.5 & RCP8.5 シナリオ
  - 期間(25-yr):
    - **20C** (1981-2005)
    - mid-21C (2036-2060)
    - late-21C (2076-2100)

### 低気圧経路解析: SLP 極小値の検出・追跡 Serreze et al. (1993, Meteorol. Atmos. Phys.)の修正版

- 等緯度経度間隔SLPを EASEグリッド(等面積格子. 中緯度で約140 km 間隔, NH: 145 x 145 グリッド)に変換
- □ SLP 極小値(周囲より 0.5 hPa以上低い)を「低気圧の中心」として追跡. 1日 未満で消滅するものは対象外.

※NH全体で

- 発生: △t 時間前, d [km] 以内に低気圧中心がない
- 消滅: △t時間後, d [km] 以内に低気圧中心がない



### 爆弾低気圧の経路 = Yoshida and Asuma (2004, MWR) を踏襲 日本付近(30-50N, 130-150E)を通過する低気圧のみ使用



### Track types of 'bomb' cyclones in Japan (30-50N, 130-150E): Three reanalysis dataset (Oct-Mar 1981-2005)

| Reanal.               | OJ (%) | PO-L (%) | PO-O (%) | other (%) | total freq.<br>(count/year) |
|-----------------------|--------|----------|----------|-----------|-----------------------------|
| JRA55                 | 21.4   | 24.7     | 51.7     | 2.1       | 29.8                        |
| ERA Interim           | 21.5   | 24.1     | 52.2     | 2.3       | 33.7                        |
| CFSR                  | 21.2   | 27.2     | 49.2     | 2.5       | 30.9                        |
| YA2004<br>(1995-1999) | 18.8   | 22.3     | 49.1     | 9.8       | 44.8                        |

■ 爆弾低気圧の経路タイプ, Yoshida and Asuma (2004 MWR) による3分類を適用

□ OJ & PO-L が各2割, PO-O が約半分. YA2004 とほぼ同様の比率

□ YA2004 より合計頻度が少ないのは,低気圧検出範囲が狭いため.

- □ 本研究では, 150E より東で発生する低気圧をカウントせず. つまり, 現状では PO-O の爆弾低気圧個数を過小評価.
- □ 同一期間の頻度: 29.8個 (JRA55), 33.8個 (ERA Interim), 30.8個 (CFSR)

### Cyclone track frequency in Japan Feb (20C) CMIP5 vs. JRA55 (全低気圧)



□ 低気圧主要経路は, 40~45Nの日本海北部~北海道東方海上をとるものが多い

18/22



- MIROC5 は過小, CMCC-CM は過大
- □ PO-O: 全般的に多くのモデルが過小
  - 特に Feb~Mar では、全モデルが再解析の平均頻度に対し、大幅に過小評価 (Feb: -40%, Mar: -50%)

### Future change of track types of 'bomb' cyclones in Japan (30-50N, 130-150E) RCP8.5 (Oct-Mar 2076-2100)

|               | OJ (%)          | PO-L (%)       | PO-O (%)        | other<br>(%) | total N<br>(個数&増減比)         |
|---------------|-----------------|----------------|-----------------|--------------|-----------------------------|
| MRI-CGCM3     | 28.4<br>(+5.5)  | 25.4<br>(-2.1) | 37.9<br>(-5.3)  | 8.3          | 708<br>(-49; <b>-6%</b> )   |
| MIROC5        | 36.3<br>(+12.7) | 24.3<br>(-2.5) | 33.2<br>(-12.1) | 6.1          | 460<br>(-65; <b>-12%</b> )  |
| CCSM4         | 26.7<br>(+3.0)  | 32.0<br>(+0.3) | 34.0<br>(-3.7)  | 7.3          | 494<br>(-122; <b>-20%</b> ) |
| CNRM-CM5      | 27.1<br>(+1.4)  | 32.9<br>(+1.5) | 33.5<br>(-3.5)  | 6.6          | 502<br>(-96; <b>-16%</b> )  |
| CMCC-CM       | 35.2<br>(+1.6)  | 30.1<br>(+2.4) | 24.6<br>(-4.6)  | 7.1          | 707<br>(-159; <b>-18%</b> ) |
| BCC-CSM1-1(M) | 28.3<br>(+1.8)  | 23.8<br>(+0.9) | 33.7<br>(-5.6)  | 14.2         | 668<br>(-118; <b>-15%</b> ) |

□ 頻度, 寒候期全体では減少(-6%から-20%; モデル別20Cに対する比)

□ 全モデルで PO-O が減少 & OJ が増加

### 爆弾低気圧の**強さ(<sup>V2</sup>(SLP))** <sup>※150Eより西での最大値</sup> の将来変化(RCP8.5; 6モデル合計版)



- PO-L, PO-O の頻度・強さの将来変化は類似.
  - □ 頻度:大幅に減少(それぞれ -12%, -27%)
  - □ 強さ:弱い爆弾低気圧(20CのCMIP5モデル中央値未満)の比率が 相対的に増加,強い低気圧(20Cの90%値以上)は減少
- □ OJは強い低気圧数を再解析よりも過大に検出
  - □ 頻度: 20C と late 21C で同程度
  - □ 強さ:強い低気圧の頻度は減少,中程度の強さ(同じく50%-75%値)の爆弾低気圧は20Cとほぼ同程度の頻度

14Jan2013: 106.4

08Feb2014: 74.4

15Feb2014: 47.3

### まとめ(2): 日本付近の爆弾低気圧の将来変化

- CMIP5現在気候実験(20C)における日本周辺の爆弾低気圧の活動 を調査. 全頻度や経路タイプごとの存在比は長期再解析と類似.
  - ただし, PO-O タイプの頻度を過小評価(特に Feb, Mar).爆弾低気
     圧だけでなく,全低気圧でも同様の結果.
- □ 将来気候(late 21C)では,経路ごとに変動傾向が異なる.
  - □ PO-O タイプ:解析対象の全モデルで爆弾低気圧頻度が大幅低下.日本 付近では「弱い」爆弾低気圧頻度が相対的に増加
  - OJ タイプ:頻度は20Cと同程度.中程度の爆弾低気圧数が増加.ただし, モデル間で比較すると強さに関する将来変化傾向が正反対になるものも.
- 今後の課題:なぜ上記のような将来変化となるのか?
  ・ OJの将来変化がモデル間でバラつく理由は?
  - 擾乱の成長率に関与する要素(鉛直シアー, 潜熱)の解析

### 全体まとめ

- 目頭のギモン:「温暖化」したら、寒候期の日々の天候は「穏やか」になるのか?
  - 地上気温変動性:中緯度では,「20C気候よりも大きな地上気温 低下」が生じる可能性が予測されている
  - ■「爆弾」低気圧活動(日本周辺):いわゆる「南岸低気圧型」は 頻度減少&弱化,「日本海ーオホーツク型」は20C並みの頻度強 さを維持
- これら2つの結果は、相互に関連し合っているのか? 現時 点では整合性のある説明を見いだせていない

