2010.9.15 第1回ヤマセ研究会

CMIP3マルチモデルにおけるヤマセに関連した 大規模循環場の再現性と将来変化

気象研·気候 遠藤洋和

謝辞:本研究は、環境省の地球環境研究総合 推進費(S-5-2)の支援により実施された。

● 解析したCMIP3モデル: 計18モデル

Madal	Countra	Atmospheric			
Model	Country	resolution (lat. x lon.)			
cccma_cgcm3_1	Canada	2.8 x 2.8			
cccma_cgcm3_1_t63	Canada	1.9 x 1.9			
cnrm_cm3	France	1.9 x 1.9			
csiro_mk3_0	Australia	1.9 x 1.9			
csiro_mk3_5	Australia	1.9 x 1.9			
gfdl_cm2_0	USA	2.0 x 2.5			
gfdl_cm2_1	USA	2.0 x 2.5			
giss_aom	USA	3.0 x 4.0			
giss_model_e_r	USA	4.0 x 5.0			
iap_fgoals1_0_g	China	2.8 x 2.8			
ingv_echam4	Italy	1.1 x 1.1			
inmcm3_0	Russia	4.0 x 5.0			
ipsl_cm4	France	2.5 x 3.8			
miroc3_2_hires	Japan	1.1 x 1.1			
miroc3_2_medres	Japan	2.8 x 2.8			
miub_echo_g	Germany,	39 x 39			
	Korea	0.0 × 0.0			
mpi_echam5	Germany	1.9 x 1.9			
mri_cgcm2_3_2a	Japan	2.8 x 2.8			

CMIP3: The World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 第3期結合モデル相互比較マルチ気候モデル実験 (IPCC第4次報告書で使用された)

- ・20C3M実験
- ・SRES-A1B実験
- dailyデータ
- 地上風、地上気圧

・5~8月

1981~2000年 2081~2100年

- 再解析データ
 - JRA25
 - NCEP

オホーツク海付近で負のバイアス
亜熱帯高気圧が強いバイアス

● ヤマセ風の頻度

ヤマセ風の頻度(気候値)

北東風となる場合をヤマセ風発現とし、累年 の旬平均値(20年分)から頻度を数える。

- ・ヤマセ風頻度は再解析値よりも少ない
- ・季節変化(6月下旬に頻度の極大)に ついて適切に再現

● ヤマセ風の頻度

	Yamase frequency (/20yr)							
Model	May	Jun	Jul	Aug	May-Aug			
cccma_cgcm3_1	2	3	5	4	14			
cccma_cgcm3_1_t63	2	0	1	0	3			
* cnrm_cm3	8	9	8	10	35			
* csiro_mk3_0	5	13	8	12	38			
* csiro_mk3_5	3	15	11	10	39			
* gfdl_cm2_0	6	10	7	4	27			
* gfdl_cm2_1	3	6	7	7	23			
* giss_aom	1	7	8	5	21			
* giss_model_e_r	11	20	4	4	39			
iap_fgoals1_0_g	3	4	18	11	36			
inmcm3_0	4	11	3	5	23			
miroc3_2_hires	5	8	5	4	22			
miroc3_2_medres	6	8	2	0	16			
* mpi_echam5	6	7	4	2	19			
mri_cgcm2_3_2a	6	14	18	19	57			
ingv_echam4	2	4	6	9	21			
ipsl_cm4	10	14	19	15	58			
<u>* miub_echo_g</u>	6	5	7	10	28			
MME18 mean	4.94	8.78	7.83	7.28	28.8			
JRA	7	16	12	8	43			

個々のモデルで見るとばらつきがとても大きい

● ヤマセ風頻度とMSLP分布の再現性の関係

ヤマセ風頻度(縦軸): ヤマセ風頻度の5~8月の月別気候値のRMSE

MSLP分布(横軸): MSLPの5~8月の月別気候値分布(25~60N、120-180E)の スキルスコア平均(Taylor,2001) $S = \frac{4(1+R)}{(\hat{\sigma}_f + 1/\hat{\sigma}_f)^2(1+R_0)}$

- 5~8月合計値ではモデル間のばらつきが大きい
- ・ 月別に見ると、多くのモデルは5月に減少、8月に増加。

ヤマセ風頻度の変化(MME9hi)

MME9hiでは、

- ・8月: ヤマセ風頻度増加をすべてのモデルが予測
- •7月: ヤマセ風頻度増加を予測するモデルが多い

<u>4. 考察①: 8月のヤマセ風増加</u>

Δ (EQ-SOI)

ΔEQ-SOI = 東部太平洋(5S-5N, 160W-80W)と インド洋~西部太平洋(5S-5N, 80E-160E) のJJA平均MSLPの変化 Vecchi et al.(2006)

ΔMSLP = 東方海上(30-40N, 140E-170E)の8月平均MSLP変化

EQ-SOIの低下 → 東方海上のMSLP低下 → ヤマセ風増加
 MME9hi: EQ-SOIが低下するモデルが多い

● 現実の年々変動における関係 (NCEP再解析の1958~2007年)

Reg (EQ-SOI, MSLP)

現実の年々変動においても、 8月はEQ-SOIと太平洋中緯度MSLPの変動の相関が高い

- 冬季の高緯度域のMSLP低下が初夏まで残る傾向

 → 西風が強く、5月のヤマセ風減少
- ・高緯度域のMSLP低下はMME9hiの方が明瞭

6~7月のオホーツク海付近の気圧変化は、
 ΔEQ-SOIや冬季高緯度域ΔMSLPの変化
 とは関係ないように見える。
 →現在気候再現性が重要?

<u>5. まとめ</u>

<u>再現性</u>

- ・MME18平均のヤマセ風頻度は再解析よりも少ないが、季節変化 (6月下旬に頻度の極大)を適切に再現。
- ・ヤマセ風頻度の再現性能と北西太平洋のMSLP分布の再現性能に 強い相関関係がある。

<u>将来変化</u>

- ・MME18のヤマセ風頻度の変化は、5~8月合計ではモデル間でば らついたが、月別では5月に減少、8月に増加するモデルが多い。 ヤマセの吹く季節が変化する?
- ・8月のヤマセ風増加はEQ-SOIの低下、5月のヤマセ風減少は冬季北極域の気圧低下と関係があるようだ。
- ・MME9hiではヤマセ風頻度やMSLP変化傾向のモデル間一致率が 高くなった。
 - 〇要因: 熱帯域や高緯度域のMSLP変化の特徴が似ている - オホーツク海高気圧の再現性が比較的良いから?

<u>将来気候のヤマセ型低温の季節変化</u>

将来気候ではヤマセの影響を受ける時期が8月まで長引く

<u>親モデルの盛夏期の将来変化</u>

CGCM2.2の将来変化(7月25~8月18日平均)

・北日本太平洋側では北東風偏差。
 → RCM20で得られた「ヤマセの影響の遅延」と矛盾しない。
 ・北東風偏差をもたらしている大規模場の変化

 ① 日本の東海上の低気圧偏差
 ② オホーツク海方面の高気圧偏差

温暖化予測実験の方法

● 再現性指標(メトリック)の作成

ヤマセに関する再現性指標

- ① 旬別累年値から算出したヤマセ頻度の月別気候値(5~8月)のRMSE
- ② SLPの月別気候値分布(5~8月、25~60N、120-180E)のスキルスコア(Taylor,2001)

①と②を規格化して平均したものを再現性メトリックとした

	Yamase frequency (/20yr)					MSLP x-y map		Metric		
		Adjusted			Adjusted	Adjusted				
Model	May	Jun	Jul	Aug	May-Aug	Skill	Skill	Skill	Skill	SS
cccma_cgcm3_1	2	3	5	4	14	8.05	0.325	0.803	0.224	0.275
cccma_cgcm3_1_t63	2	0	1	0	3	10.79	0.000	0.758	0.000	0.000
* cnrm_cm3	8	9	8	10	35	4.18	0.782	0.914	0.771	0.777
* csiro_mk3_0	5	13	8	12	38	3.35	0.881	0.960	1.000	0.940
* csiro_mk3_5	3	15	11	10	39	2.35	1.000	0.929	0.846	0.923
* gfdl_cm2_0	6	10	7	4	27	4.42	0.755	0.949	0.942	0.848
* gfdl_cm2_1	3	6	7	7	23	5.96	0.572	0.957	0.985	0.779
* giss_aom	1	7	8	5	21	5.96	0.572	0.930	0.850	0.711
* giss_model_e_r	11	20	4	4	39	5.29	0.651	0.892	0.662	0.657
iap_fgoals1_0_g	3	4	18	11	36	7.16	0.430	0.850	0.455	0.443
inmcm3_0	4	11	3	5	23	5.57	0.619	0.891	0.656	0.637
miroc3_2_hires	5	8	5	4	22	5.77	0.595	0.811	0.263	0.429
miroc3_2_medres	6	8	2	0	16	7.57	0.382	0.771	0.068	0.225
* mpi_echam5	6	7	4	2	19	6.75	0.479	0.936	0.882	0.680
mri_cgcm2_3_2a	6	14	18	19	57	6.36	0.524	0.915	0.778	0.651
ingv_echam4	2	4	6	9	21	7.18	0.428	0.931	0.855	0.641
ipsl_cm4	10	14	19	15	58	5.27	0.654	0.872	0.562	0.608
* miub_echo_g	6	5	7	10	28	6.14	0.550	0.914	0.771	0.660
MME18 mean	4.94	8.78	7.83	7.28	28.8	6.01		0.972		
MME18 s.d.	2.70	4.88	5.25	4.98	13.8	1.83		0.062		
MME9hi mean	5.44	10.22	7.11	7.11	29.9	4.93		0.980		
MME9hi s.d.	2.79	4.64	2.02	3.31	7.56	1.37		0.021		
_										
JRA	7	16	12	8	43					

年平均地上気温の将来変化(21C末-20世紀末)

