第2回やませ研究会ミーティング 2011年3月9-10日4

カ学的ダウンスケーリングで 再現された2003/2004年7月 の領域気候と誤差について

沢田雅洋 岩崎俊樹 (東北大学)

東北農研センター本館2階大会議室

ヤマセに関連する局地気候研究

10kmメッシュダウンスケール 1000年程度

気候モデルの結果(MRI, AORI)をダウンスケール →ヤマセの頻度や強度を自動検出し統計調査

1kmメッシュダウンスケール 100か月程度 ヤマセと冬季モンスーンの地域特性の理解 2003年7月 v.s.2004年7月の比較

100mメッシュダウンスケール 100日程度

下層雲解像モデルによる雲の形成過程研究

研究背景

1kmメッシュ 気象データ => 農業利用

農業気象情報の確率予報システム

ダウンスケールの誤差要因

ダウンスケールの誤差要因 $+\alpha$

研究目的

○ ヤマセの地域特性の理解
 - 地域気候 (気温、雲、風などの日変化…)
 - 力学的ダウンスケーリングの有効性・有用性
 ○ 農業利用

- 高解像度の気象データをどう使うか(使えるか)

Today's topic

ダウンスケーリングで再現された2003/2004年(冷夏 /暑夏)の気温日変化の特徴や、その誤差を調べる

仙台の夏季地上気温の年々変動

モデル(JMA-NHM)の設定と計算領域[®]

格子数/解像度	101x101: 5km	151x151: <mark>1km</mark>
計算時間	2003/2004年6月30日~7月31日(32日)	
地表面過程	SiB(Simple Biosphere)	同左
雲物理	5-classバルク法	同左
対流スキーム	Kain-Fritsch	なし
放射	北川(2000), 藪他(2005)	同左
雲量	部分凝結	同左

地上気温と風の日変化

誤差について
ME: 平均誤差(バイアス)

$$ME = \frac{1}{31} \sum_{n=1}^{31} (T_m - T_o)$$

RE: ランダム誤差
 $RE = \left\{ \frac{1}{31} \sum_{n=1}^{31} (T_m - T_o - ME) \right\}^{1/2}$

T_m: モデルの地上気温 T_o: アメダスの地上気温

各地点、各時刻で計算

まとめ

•ヤマセの理解

- •1kmメッシュの有難味
- •初期値・境界値の影響
- •誤差要因の特定、改善
- •気象データの使い道

まとめ-2

- •気温ME/RMSE:~1K warm bias,~2K
 - 2003: RE is large in daytime
 - 2004: RE is large in night-early morning time
 - Regional feature: RE is larger in inland than in coastal area
 - -Error of DTR: reduce by NHM1km (downscaling gain???)
- Error of shortwave radiation is related to error of temp in 2003.

(cloud amount might be overestimated in nighttime in 2004)

-is closely related to Error of DTR

SST distribution in 2003/2004

Monthly mean by NGSST Left: 2003/7 Center: 2004/7 Right: 2003/7- 2004/7

140 2F 140 4F 140 6F 140 8F 141F 141 2F 141 4F 141 6F 10 2F 140 4F 140 6F 140 8F 141F 141 2F 141 4F 141 6F

Experimental design

MANAL : mesoscale objective analysis with 10-km mesh by JMA

26/14 Mean error map of Temp in 2003/2004 2003 2004 **05LT** 39N 38.8N 38.6N 38.4N 38.2N 38N 37.8N 140.4E 140.8E 141.2E 141.6E 140.4E 140.8E 141.2E 141.6E **14LT** 39N 38.8N 38.6N 38.4N 38.2N 38N 37.8N 140.4E 140.8E 141.2E 141.6E 140.4E 140.8E 141.2E 141.6E

Diurnal variation of low-level cloud^{27/14}

Color: low-level cloud Vector: wind at 10-m height

30/14

Comparison of difference in Temp.

33/14 Time-series of Temp in NHM1km/AMEDAS

warm bias cold bias

Time-series of Temp in NHM1km/AMEDAS

VIS/IR1 and sunshine duration

140.4840.7E141E141.3E41.6E 140.4840.7E141E141.3E41

Scatter plot of ME in DTR

Scatter plot of RMSE in DTR

Cold and moist easterly~northeasterly, usually associated with low-level clouds (Yamase cloud).
yields a cold summer (1993, 2003), serious damage to rice crop.

ヤマセに関連する局地気候研究

- <u>温暖化研究 10kmメッシュ</u>
 - 気候モデルのダウンスケールで地球温暖化 時のヤマセの発生頻度、強度の予測
- ・地域特性研究 1kmメッシュ
 事例研究(2003年7月と2004年7月の比較)
- 物理過程研究100mメッシュ
 - 下層雲解像モデルによる雲の形成過程研究

